
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +61 0

E-mail addr
Journal of Sound and Vibration 304 (2007) 297–325

www.elsevier.com/locate/jsvi
High-order symmetrical hyperbolic wavelets

Khoa N. Le�

Gold Coast campus, Griffith School of Engineering, Griffith University, Parklands Drive, Southport QLD4215, Australia

Received 28 March 2006; accepted 3 March 2007
Abstract

This paper studies high-order wavelets of the first-order hyperbolic, Choi–Williams (CW) and nth-order hyperbolic

kernels for analyses of digital time series, by using their second- and higher-order derivatives. For time-domain

investigations, normalisation constants of the second-, fourth-, sixth-, eighth- and tenth-order hyperbolic and CW wavelets

are numerically given. For frequency-domain investigations, wavelet parameters including band-peak frequencies,

minimum numbers of sampling points, scale limits, scale resolutions and total number of scales are explicitly given and

numerically estimated for the fourth-order hyperbolic and CW wavelets. Parameter comparisons among the Morlet

wavelet, hyperbolic and CW second- and fourth-order wavelets are also given. Detection of periodicity and chaos in the

Duffing oscillator is discussed.

Crown Copyright r 2007 Published by Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

Time–frequency signal processing has been one of the main areas in signal processing for many years.
Cohen’s generalised time–frequency distribution has been well known and found many applications [1,2]. The
most useful feature of Cohen’s time–frequency distribution is the involvement of a kernel function F(y,t)
which uniquely determines properties of its time–frequency distribution. A number of kernels have been
proposed over a time period of nearly 50 years in which the unity kernel, Wigner–Ville F(y, t) ¼ 1, is the
simplest. In 1989, Choi–Williams (CW) kernel [3] was proposed and shown to be more effective in cross-term
suppression than Wigner–Ville kernel. In 1995, Costa and Boudreaux-Bartels [4] proposed a multiform tiltable
exponential kernel which further improves cross-term suppression and auto-term support. However, various
types of this kernel cannot be explicitly derived. The first-order hyperbolic kernel F(y,t) ¼ [sech(byt)]n ¼ 1 and
hyperbolic kernel family [5] were proposed and have been shown to be more effective than CW kernel in terms
of cross-term suppression and noise robustness. A complete survey of all kernels for Cohen’s generalised
time–frequency distribution is given in Refs. [1,2,5].
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To be an admissible kernel, F(y,t) must satisfy seven constraints that were extensively investigated in
Refs. [1,2,5–8]. Typical examples on kernel-wavelet relations were shown in Ref. [9] for the first-order
hyperbolic and CW kernels on one hand, and for the hyperbolic and Mexican-hat (CW) wavelets on the other
hand, in which the kernels’ negative second-order derivatives were employed to obtain the two wavelets.
Because of its locality and positivity in the frequency domain, the second-order kernel derivative, called
Laplacian operator r2 ¼ q2/qx2+q2/qy2 [10,11], has been used to detect image zero-crossings and intensity
changes. It was also shown by Marr that the operator can be tuned to detect fine changes such as edge
detection in images, moreover, it is a differential operator which allows explicit calculations of higher-order
derivative functions. The works reported in Refs. [5,9] have motivated further studies on higher-order
derivatives (higher-order Laplacian operators) of the first-order hyperbolic, CW and nth-order hyperbolic
kernels. This might also lead to discoveries of new kernels and wavelets, and consequently, opens up new
research directions on wavelets and their useful applications. It should also be stressed that currently there are
two symmetrical wavelets that have been widely employed, namely Morlet and Mexican-hat wavelets. Thus
proposals of new symmetrical wavelets play an important role in possibly improving previous results obtained
by using the Morlet and CW wavelets.

According to Addison et al. [12], symmetrical wavelets including Morlet and CW which may be con-
sidered as second-order wavelets generated from their corresponding kernels, have often been overlooked
in the literature even though they have found many applications in various disciplines, in particular
detection of coherent structures in turbulence and in ECG signals [13]. Thus it is believed that there are
still new ideas and further improvements in using higher-order symmetrical wavelets. The aims of this paper
are as follows. Firstly, to show that high-order derivatives of admissible kernels used in Cohen’s
time–frequency distributions are admissible wavelets. Secondly, high-order hyperbolic and CW wavelet
parameters including band-peak frequencies, minimum numbers of sampling points, scale limits, scale
resolutions and total number of scales are numerically estimated and rigorously compared using typical values
of wavelet parameters b and s.

This paper extends the work carried out in [9,14] and reports new results on high-order symmetrical
hyperbolic wavelets, which can be used to analyse digital time series. The paper is primarily devoted to
investigate in detail these wavelets’ mathematical properties by explicitly deriving and numerically estimating
their useful parameters as outlined in detail in Ref. [14]. In view, this paper can be considered as the
foundation for further work on higher-order hyperbolic wavelets in one hand and on other higher-order
symmetrical wavelets such as Morlet wavelet in the other hand. In addition, the paper is also devoted to
explain the origin of these wavelets and their close relations to kernels used in Cohen’s time–frequency
distributions.

1.2. Paper structure

The paper can be divided into two parts. The first part discusses time-domain properties of the hyperbolic
and CW high-order wavelets by checking their zero-mean admissibility constraints, calculating normalisation
constants and presenting graphical plots. The second part explicitly calculates and numerically estimates the
hyperbolic and CW wavelet parameters including band-peak frequency, minimum number of sampling points,
scale limits, scale resolution, maximum number of scales and total number of scales. The Duffing oscillator is
used as a case study to show the effectiveness of hyperbolic and CW high-order wavelets. There are three
different high-order wavelet types which are generated from three kernels: first-order hyperbolic, CW and nth-
order hyperbolic, in which the first two will be extensively studied. The last wavelet type is explicitly given in
terms of the kernel order n and not numerically estimated.

The paper is organised as follows. An important relation among kernels and wavelets is discussed via the
meaning of kernels’ even-order derivation (Section 2) and positive concavity (Section 3), from that, admissible
wavelets can be identified. Hyperbolic and CW wavelet normalisation constants are numerically estimated for
b ¼ 1 and s ¼ 2. Sections 4 and 5 explicitly derive high-order hyperbolic and CW wavelet frequency
parameters which are also numerically estimated in Section 6. Section 7 studies Duffing oscillator using high-
order hyperbolic and CW wavelet transforms and wavelet power spectra. Section 8 concludes main ideas that
have been discussed in the paper and briefly outlines future work.
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2. Relationship between time–frequency kernels and wavelets

The second-order derivatives of the first-order hyperbolic and CW kernels are symmetrical and satisfy an
admissibility constraint of having zero areas under their graphs as explained in Ref. [9]. The zero-mean
admissibility constraint, which is the wavelet’s area under its graph, must be zero and is given by [1,2,9,15,16]Z þ1

�1

cðtÞdt ¼ 0, (1)

where c(t) is the wavelet function.
It is important to stress that not all functions that satisfy the admissibility constraint given by Eq. (1) are

admissible wavelets. Moreover, to be an admissible wavelet, a function must have finite energy, i.e. finite time
support. The simplest wavelet, Haar, comprises of two rectangular square waves of finite time support [15,16]
from 0 to 1. The periodic sinusoidal function, which has been used in Fourier series expansions and Fourier
transforms, even though meets the admissibility constraint, cannot be considered as an admissible wavelet
because of its infinite energy and time support. For completeness, the continuous wavelet transform of a
function x(t) is given by

WTða; bÞ ¼

Z þ1
�1

xðtÞc
t� b

a

� �
dt, (2)

where c((t�b)/a) is the wavelet function.
The Mexican-hat (Choi–Williams) wavelet and second-order hyperbolic wavelet [9,13] were generated by

taking negative second-order derivatives [15] of the CW and first-order hyperbolic kernels, respectively. To be
an admissible kernel, a function must meet kernel admissibility constraints which are given as [1,2,5–8]
1.
 Kernel function, F(y,t), is independent of time t,

2.
 Kernel function is independent of frequency o,

3.
 F(y,0) ¼ 1 for all y,

4.
 F(0,t) ¼ 1 for all t,

5.
 Kernel function must be real, i.e. Fðy; tÞ ¼ F�ð�y;�tÞ, where ‘‘�’’ indicates the complex conjugate,�

6.
 d

dt
Fðy; tÞ

���
t¼0
¼ 0; 8y,�
7.
 d

dy
Fðy; tÞ

���
y¼0
¼ 0; 8t.
To obtain admissible wavelets, there are two main issues that need to be considered
�
 Why have second- and even higher-order kernel derivatives been used? It should be noted that the first- and
odd higher-order derivatives have not been considered;

�
 Why has ‘‘negativity’’ been employed?

To answer the first question, consider the Fourier series expansions of a function f(x) which are given by
Eqs. (3) and (4), respectively [17]

f oddðxÞ ¼
Xþ1
n¼1

bn sin
np
L

x
� �

, (3)

where bn’s are Fourier expansion coefficients, and

f evenðxÞ ¼ a0 þ
Xþ1
n¼1

an cos
np
L

x
� �

, (4)

where L is the half period of f(x), a0 and an’s expansion coefficients.
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From Eq. (3), it is clear that when f(x) is odd, it is approximately represented by a sum of odd sinusoidal
functions, which have infinite energy, and therefore is not an admissible wavelet function. Thus, admissible
wavelet functions must not be odd functions which means that odd-order derivatives are not admissible wavelets
and will not be discussed in this paper. The answer to the second question will be given in the next section.
3. Time-domain investigations of hyperbolic and CW high-order wavelets

In this section, normalisation constants of the hyperbolic and CW wavelets with orders 2–10 numerically
estimated for b ¼ 1 and s ¼ 2. Wavelets with orders 2–10 generated from the nth-order hyperbolic kernel are
explicitly expressed, but their explicit normalisation constants are not given due to extensive mathematics which
is beyond the scope of this paper. For all graphs in this section, the typical value of b ¼ s ¼ 1 is employed for
the hyperbolic and CW wavelets, and normalisation is not included since it is intended to show the true wavelet
peaks at the origin. The nth-order hyperbolic, first-order hyperbolic and CW kernels are given by

FHy_gðtÞ ¼ ½sech ðbtÞ�n; (5)

where n ¼ 1 corresponds to the first-order hyperbolic kernel, and

FCWðtÞ ¼ expð�t2
�
sÞ, (6)

where b and s are the hyperbolic and CW kernel control parameters, respectively.
The second-order derivatives of the first-order hyperbolic and CW kernels are explicitly given by Eqs. (7)

and (8), and graphically plotted in Fig. 1

W H2ðtÞ ¼
�1

N
b
Hyp1_2

b2 sech ðbtÞ½tanh ðbtÞ�2 � sech ðbtÞ 1� ½tanh ðbtÞ�2
� 	� 	

, (7)

WCW2ðtÞ ¼
�1

Ns
CW2

2e�t2=sð�sþ 2t2Þ

s2
, (8)

where N
b
Hyp1_2 and Ns

CW2 are normalisation constants of the second-order hyperbolic and CW wavelets,
respectively.
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Fig. 1. Negative second derivatives of the first-order hyperbolic and CW kernels for b ¼ s ¼ 1.
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To be an admissible wavelet, a function must satisfy the admissibility constraint given by Eq. (1) of having a
zero area under its graph or zero mean [9]. For the second-derivatives of the first-order hyperbolic and CW
kernels, their admissibility constraints are explicitly given as follows:

CH2_Contraint ¼

Z þ1
�1

�1

N
b
Hyp1_2

b2 sech ðbtÞ½tanh ðbtÞ�2 � sech ðbtÞ 1� ½tanh ðbtÞ�2
� 	� 	

dt ¼ 0, (9)

and

CCW2_Constraint ¼

Z þ1
�1

�1

Ns
CW2

2e�t2=sð�sþ 2t2Þ

s2
dt ¼ 0, (10)

which show that these derivatives are admissible wavelets.
The square normalisation constant of a wavelet c(t), which is proportional to its total energy, is calculated

by using the following formula [15]

N
ðcontrol_parameterÞ
wavelet_name

� �2
¼

Z þ1
�1

½cðtÞ�2 dt ¼ 2

Z þ1
0

½cðtÞ�2 dt. (11)

It should be noted that normalisation constants are employed so that wavelets have unity peaks at the
origin. For the Mexican-hat wavelet, the control parameter value of s ¼ 2 is used which approximately yields

its normalisation constant of N
ðs¼2Þ
CW2 ¼ p1=4

ffiffiffi
3
p �

2 � 1:153. For other values of s, the CW normalisation

constant Ns
CW2 is given as

ðNs
CW2Þ

2
¼

3

s

ffiffiffiffiffiffi
p
2s

r
. (12)

Similarly, for b ¼ 1, the second-order hyperbolic wavelet normalisation constant is given by

N
b¼1
Hyp1_2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
14=15

p
� 0:97. For other values of b, the second-order hyperbolic wavelet normalisation constant

N
b
Hyp1_2 is given as

ðN
b
Hyp1_2Þ

2
¼

14b3

15
. (13)

The third-order derivatives of the CW and first-order hyperbolic kernels are given as

W H3ðtÞ ¼ �
b3 sinh ðbtÞ ½cosh ðbtÞ�2 � 6

� 	
½cosh ðbtÞ�4

, (14)

WCW3ðtÞ ¼
4te�t2=s

s2
3�

2t2

s

� �
. (15)

For s ¼ b ¼ 1, graphical representations of Eqs. (14) and (15) are given in Fig. 2. As can be seen, both
third-order derivative functions have zero peaks at the origin, i.e. f(x) ¼ �f(�x), which clearly are odd
functions. Since it is necessary that a wavelet possesses a non-zero peak at the origin so that it is ‘‘continuous’’
at t ¼ 0, these derivative functions are not useful as explained earlier in Section 2. Mathematically, the fourth-,
sixth-, eighth- and tenth-order derivatives of the hyperbolic and CW kernels are given by Eqs. (16)–(23),
respectively

W H4ðtÞ ¼ b4 sech ðbtÞf�20½sech ðbtÞ�2 þ 24½sech ðbtÞ�4g, (16)

WCW4ðtÞ ¼
4e�t2=s

s2
3�

12t2

s
þ

4t4

s2

� �
, (17)

W H6ðtÞ ¼ b6
½cosh ðbtÞ�6 � 182½cosh ðbtÞ�4 þ 840½cosh ðbtÞ�2 � 720

½cosh ðbtÞ�7

� �
, (18)
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Fig. 2. Third-order derivatives of the first-order hyperbolic and CW kernels for b ¼ s ¼ 1.
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WCW6ðtÞ ¼
8e�t2=s

s3
�15þ

90t2

s
�

60t4

s2
þ

8t6

s3

� �
, (19)

W H8ðtÞ ¼ b8
½cosh ðbtÞ�8 � 1640½cosh ðbtÞ�6 þ 23; 184½cosh ðbtÞ�4 � 60; 480½cosh ðbtÞ�2 þ 40; 320

½cosh ðbtÞ�9

� �
, (20)

WCW8ðtÞ ¼
16e�t2=s

s4
105�

840t2

s
þ

840t4

s2
�

224t6

s3
þ

16t8

s4

� �
, (21)

W H10ðtÞ ¼ b10
½cosh ðbtÞ�10 � 14; 762½cosh ðbtÞ�8 þ 599; 280½cosh ðbtÞ�6

�3; 659; 040½cosh ðbtÞ�4 þ 6; 652; 800½cosh ðbtÞ�2 � 3; 628; 800

½cosh ðbtÞ�11

0
B@

1
CA, (22)

WCW10ðtÞ ¼
�32e�t2=s

s5
945�

9450t2

s
þ

12; 600t4

s2
�

5040t6

s3
þ

720t8

s4
�

32t10

s5

� �
. (23)

By using similar mathematical techniques carried out in Eqs. (9) and (10), it is clear that the above functions
meet the admissibility constraint imposed by Eq. (1) and hence they are admissible wavelets which are plotted
in Figs. 3–6, respectively. By using Eq. (11), their normalisation constants are numerically given in Table 1.

It should be noted that a wavelet, as analogous to the complex exponential function in the Fourier
transform, can be used to represent any signal by expressing it as a sum of products of the wavelet with its
expansion coefficients [15,16]. Thus, the number of side lobes of a wavelet function, which determines the
order of sub-harmonics used in the series sum, is important in representing signals since the more higher-order
harmonics involved in the sum, the more accurate the approximation. As can be seen in Figs. 4 and 5, for the
CW wavelet, there is a significant improvement of the eighth-order derivative with three side lobes to the sixth-
order derivative with two side lobes. For the hyperbolic wavelet, there are no significant improvements in
going from the sixth-order derivative to the eighth-order derivative whose numbers of side-lobes remain
unchanged at two. From Fig. 5, the eighth-order derivative, and Fig. 6, the tenth-order derivative of the first-
order hyperbolic and CW kernels, there are no significant improvements as their numbers of side-lobes remain
unchanged. It should also be noted that the side-lobe and peak magnitude of both wavelets increase as the
order increases. The larger is the peak magnitude, the more concentrated power is at the first harmonic in the
expansion sum, and the more accurate is the signal approximation. Moreover, the larger is the side-lobe
magnitude, the more accurate are the high-order sub-harmonic terms in the sum. From Figs. 3 to 6, it can also
be suggested that the CW wavelets are better than the hyperbolic wavelets by having more side-lobes with
larger magnitude. However, it was shown [9] that the second-order hyperbolic wavelet, which is the negative
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second-order derivative of the first-order hyperbolic kernel, is more effective than the CW second-order
wavelet by having a finer scale resolution.

From Table 1, it is clear that the hyperbolic and CW wavelet normalisation constants second- up to tenth-order
derivatives become significantly large as the derivative order increases. This means that high-order wavelets can
finely concentrate their energy at the origin which results in relatively smaller side-lobe magnitude compared to
the peak magnitude. This feature can be used to successfully expand certain sections of a wavelet power spectrum
or time–frequency power spectrum to detect fine details or intensity changes in the input signal, of which
amplification is also possible. By saying that, the tenth-order wavelet is more effective than the eighth-order
wavelet because they possess an identical number of side lobes as explained earlier.
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Table 1

Approximate normalisation constants of the hyperbolic (using first-order hyperbolic kernel) and CW high-order wavelets for b ¼ 1 and

s ¼ 2

First-order Hyperbolic kernel CW kernel, s ¼ 2

Second-order wavelet 0.97 1.153

Fourth-order wavelet 4.115 3.41

Sixth-order wavelet 45.53 17

Eighth-order wavelet 964.13 118.5

Tenth-order wavelet 33,311.44 1064.55
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Time-domain studies on high-order hyperbolic and CW wavelets have been discussed in this section. For
completeness, explicit expressions of the negative second-, fourth-, negative sixth-, eighth- and negative tenth-
order wavelets of the nth-order hyperbolic kernel [5,9] are given by Eqs. (24)�(28), respectively

cHy_g2ðtÞ ¼ ð�1Þnb
2
½sech ðbtÞ�nfn� ðnþ 1Þ½sech ðbtÞ�2g, (24)

cHy_g4ðtÞ ¼ nb4
n3

½cosh ðbtÞ�n
�

2ðn3 þ 3n2 þ 4nþ 2Þ

½cosh ðbtÞ�nþ2
þ

n3 þ 6n2 þ 11nþ 6

½cosh ðbtÞ�nþ4

� �
, (25)

cHy_g6ðtÞ ¼
ð�1Þnb6

½cosh ðbtÞ�n

½cosh ðbtÞ�6n5 � ½cosh ðbtÞ�4ð3n5 þ 15n4 þ 40n3 þ 60n2 þ 48nþ 16Þ

þ½cosh ðbtÞ�2ð3n5 þ 30n4 þ 125n3 þ 292nþ 120Þ þ
270n2

½cosh ðbtÞ�4

�ðn5 þ 15n4 þ 85n3 þ 225n2 þ 240nþ 120Þ

0
BBBB@

1
CCCCA, (26)

cHy_g8ðtÞ ¼
nb8

½cosh ðbtÞ�n

�

½cosh ðbtÞ�8ðn7 þ 28n6 þ 322n5 þ 1960n4 þ 6769n3 þ 13; 132n2 þ 13; 068nþ 5040Þ

�½cosh ðbtÞ�6ð4n7 þ 84n6 þ 756n5 þ 3780n4 þ 11; 256n3 þ 19; 656n2 þ 18; 224nþ 6720Þ

þ½cosh ðbtÞ�4ð6n7 þ 84n6 þ 546n5 þ 2100n4 þ 5040n3 þ 7392n2 þ 6000nþ 2016Þ

�½cosh ðbtÞ�2ð4n7 þ 28n6 þ 112n5 þ 280n4 þ 448n3 þ 256nþ 64Þ þ n7

0
BBBBB@

1
CCCCCA, ð27Þ
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cHy_g10ðtÞ ¼
ð�1Þnb10

½cosh ðbtÞ�n

�

�½cosh ðbtÞ�10ðn9 þ 45n8 þ 870n7 þ 9450n6 þ 63; 273n5 þ 269; 325n4

þ723; 680n3 þ 1; 172; 700n2 þ 1; 026; 576nþ 362; 880Þ

þ½cosh ðbtÞ�8ð5n9 þ 180n8 þ 2850n7 þ 26; 040n6 þ 150; 885n5 þ 571; 620n4

þ1; 402; 900n3 þ 2; 123; 760n2 þ 1; 769; 760nþ 604; 800Þ

�½cosh ðbtÞ�6ð10n9 þ n8 þ 3330n7 þ 24; 570n6 þ 118; 692n5 þ 385; 560n4

þ832; 640n3 þ 1; 136; 880n2 þ 874; 848nþ 282; 240Þ

þ½cosh ðbtÞ�4ð10n9 þ 480n8 þ 1590n7 þ 8820n6 þ 33; 096n5 þ 85; 680n4

þ150; 960n3 þ 170; 320n2 þ 113; 984nþ 32; 640Þ � ½cosh ðbtÞ�2ð5n9 þ 45n8

þ240n7 þ 840n6 þ 2016n5 þ 3360n4 þ 3840n3 þ 2880n2 þ 1280nþ 256Þ þ n9

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

. ð28Þ

The nth-order hyperbolic wavelet normalisation constants can be explicitly found by using Eqs. (11) and
(24)�(28), which extensively involve mathematical manipulations and therefore is beyond the scope of this
paper. In addition, it is believed that they can be readily found once the kernel order n is specified. In general,
high-order hyperbolic wavelets can be generated from their corresponding kernels by using the following
formula:

cHypðtÞ ¼ ð�1Þ
ðm_mod_2Þ d

m FHypðtÞ
� �
ðdtÞm

; for m ¼ 2; 4; 6; . . . , (29)

where m is the wavelet order and m_mod_2 the modulo of m to 2, i.e. (m ¼ 2) mod 2 ¼ 1. If the modulo of m

to 2 is an odd number (for cases of m ¼ 2,6,10,y) then negativity should be used so that the wavelet is
concave-up and therefore has a positive peak at the origin.

As can be seen throughout this section, high-order kernel derivatives have been shown to be admissible
wavelets. After completing time-domain studies of high-order wavelets, the answer to question 2 raised in
Section 2 is that ‘‘negativity’’ is employed so that wavelets are concave-up functions. This means that their
peaks will be positive and non-zero at the origin, which can also validate them as admissible kernels, providing
that b and s must be specifically chosen to meet kernel constraints 3 and 4 which impose that a function must
possess a unity value under DC condition. Constraints 6 and 7 are also met by symmetrical wavelets since they
are even functions and their odd-order derivative functions have been shown in this section, i.e. third-order
derivative in Fig. 2, to vanish under DC conditions. Moreover, it is more important to note that the fourth-
order kernel derivative is the second-order derivation (second-order Laplacian operator) of the second-order
kernel derivative which means that recursively, the second-order kernel derivative can be considered as an
admissible kernel if it is concave-up, and meets constraints 3 and 4 for some values of b and s. Similarly, this
recursive relation can be applied to admissible higher-order wavelets, and as the wavelet order m approaches
infinity, there exist an infinite number of admissible kernels, which are generated from high-order wavelets, for
Cohen’s time–frequency power spectrum formula. It should also be stressed that concavity does not affect the
wavelet expansion sum [15,16]. To satisfy constraints 3 and 4 so that admissible high-order wavelets possess a
unity peak under DC conditions and therefore can be considered as admissible kernels, the parameters b and s
must be set to specific values, which are summarised in the following table for wavelet orders 2–10 (Table 2).

In this section, second- and higher-order derivatives of the first-order hyperbolic, CW and nth-order
hyperbolic kernels have been discussed in which their expressions and normalisation constants are
mathematically and numerically given. These functions have been graphically presented, and it is clear that
they belong to a ‘‘crude’’ symmetrical wavelet group [9]. More importantly, high-order derivatives of
admissible kernels have been shown to be admissible wavelets and it appears that these might perform better
than the second-order hyperbolic and CW wavelets. The wavelet–kernel relationship has been explained via
the meaning of positive concavity and kernels’ even high-order derivative concepts.
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Table 2

Approximate values of b and s to generate admissible kernels from high-order hyperbolic and CW wavelets

Wavelet order b s

Second 1 (exact) 2 (exact)

Fourth (1/5)1/4E0.669
ffiffiffiffiffi
12
p

E3.46

Sixth (1/61)1/6E0.5 1201/3E4.93

Eighth (1/1385)1/8E0.404 16801/4E6.4

Tenth (1/50,521)1/10E0.339 30,2401/5E7.87
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4. Frequency-domain investigations of the hyperbolic and CW high-order wavelets by using high-order derivatives

of the first-order hyperbolic and CW kernels

The Fourier transforms of the second-order hyperbolic and CW wavelets were given in Ref. [9] and will not
be repeated here. This section extends the work reported in Refs. [9,14] by explicitly calculating parameters of
the hyperbolic (using the first-order hyperbolic kernel) and CW high-order wavelets so that they can be used to
analyse digital time series. Detailed definitions and meanings of these wavelet parameters were given in
Refs. [9,14] and will not be repeated here. It was also shown in Sections 2 and 3 that high-order derivatives of
the first-order hyperbolic and CW kernels are admissible wavelets, therefore, the terms ‘‘high-order
derivatives’’ will be replaced by ‘‘high-order wavelets’’ from this point. In this section, the term ‘‘hyperbolic’’
kernel means ‘‘first-order hyperbolic’’ kernel, i.e. sech(bt), unless otherwise stated. It should also be noted that
a wavelet’s time-based interval, T, is dimensionless, while the sampling interval, (Dt0), of the digital input
signal is dimensional. Thus a mapping method [9,14] was employed to consistently convert dimensional to
non-dimensional quantities and vice versa. The method is given as [14]

t ¼
2T

NðDt0Þ
t0, (30)

where t and t0 are non-dimensional and dimensional quantities, respectively.
An expression for a non-dimensional frequency f is obtained by taking the inverse of Eq. (30), yielding

f ¼
NðDt0Þ

2T
f 0; or o ¼

pNðDt0Þ

T
f 0. (31)

The non-dimensional Fourier transforms of the mth-order hyperbolic wavelets are explicitly given by

ĉHyp_mðoÞ ¼
pom

b
sech

po
2b

� �
, (32)

where m ¼ 2,4,6,8,10,y, is the even wavelet order.
4.1. Band-peak frequency

From Refs. [9,14], it should be noted that Eq. (32) is non-dimensional, thus, by using the relation

o ¼
pNHyp_mðDt0Þ

THyp_m

f 0,

given by Eq. (31), the dimensional expression of the Fourier transform of the mth-order hyperbolic wavelet is
explicitly given by

ĉHyp_mðf
0
Þ ¼

p
ffiffiffi
a
p

b
exp �

jNHyp_mpf 0ðDt0Þb0

THyp_m

� �
a

NHyp_mpf 0ðDt0Þ

THyp_m

� �m

sech a
p
2b

NHyp_mpf 0ðDt0Þ

THyp_m

� �
. (33)
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The wavelet dimensional band-peak frequency is found by equating its first derivative to zero and is
explicitly given by

f 0p ¼
2bmTHyp_m

ap2NHyp_mðDt0Þ
. (34)

As can be seen from Eq. (34), the hyperbolic wavelet band-peak frequency is directly proportional to the
wavelet order m which suggests that high-order hyperbolic wavelets can be successfully used at high
frequencies. The second-order hyperbolic wavelet (m ¼ 2) has the lowest band-peak frequency which
determines the lower operating frequency range of the hyperbolic wavelet family.
4.2. Aliasing

To avoid aliasing effects in sampling a wavelet non-dimensionally and the input signal dimensionally, the
Nyquist criterion must be met. The wavelet minimum number of sampling points can be found by using the
following formula [9,14] with the scale a ¼ 1:

a ¼
c0a¼1;b0 f 0Ny

� �
c0a¼1;b0 f 0p

� � , (35)

where f 0Ny
¼ 1=2ðDt0Þ is the Nyquist frequency, f 0p the wavelet band-peak frequency and a the aliasing ratio,

typically in the range of 0oap0.1 (10%).
By using Eq. (35), and substituting f 0Ny

¼ 1=2ðDt0Þ and f 0p [given by Eq. (34)] into Eq. (33), the
mth-order hyperbolic wavelet minimum number of sampling points, NHyp_m, is the root of the following
equation:

a ¼
aNHyp_mp2

4THyp_mbm

� �m
cosh ðmÞ

cosh
aNHyp_mp2

4THyp_mb

� � . (36)

When m approaches infinity, from Eq. (36), NHyp_m is the root of the following equation:

a cosh
aNHyp_mp2

4THyp_mb

� �
¼

cosh ðmÞ

mm
�!

m!1
0, (37)

in which there are no solutions to NHyp_m. From Eq. (37), it might be suggested that infinitely high-order
hyperbolic wavelets are not practically useful, leading to a trade-off between kernel and wavelet performance,
as reported in Ref. [5], in which the larger b is, the more effective cross-term-suppression is the hyperbolic
kernel, but the coarser is its wavelet scale resolution. In general, it should be noted that once m, which must be
different from zero, is specified, the wavelet one-sided time-based interval THyp_m can be estimated, and hence
its minimum number of sampling points by applying a graphical method [9] to Eq. (36).
4.3. Scale limit

Scales are inversely proportional to frequencies in the frequency domain. For each wavelet, there exists a
maximum scale number that it can display. The larger is the scale limit, the more effective is the wavelet for
broad-spectrum analyses. The maximum scale number used for a wavelet is determined based on the number
of wrapped-around points or end-points of the input signal since these points do not provide useful
information. From Refs. [9,14], the number of wrapped-around points, as a function of the scale a, at one end
is approximately given as

NwrapðaÞ �
aðN � 1Þ

2
. (38)
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To estimate the maximum scale number of a wavelet, Z is introduced as a fraction of the number of
wrapped-around points Nwrap(a) [given by Eq. (38)] and M ¼ 2k, the number of input data points into the
wavelet, to obtain [9,14]

amaxðNHyp_m � 1Þ
�
2

2k
p

Z
2
; and Z ¼

NwrapðaÞ

M
. (39)

Thus, for a given value of NHyp_m, the wavelet scale limit can be found by using Eq. (39). To obtain a fast
calculation, M should be a power of two which means k should be an integer. It should also be noted that the
smaller M is, the more efficient is the wavelet.
4.4. Scale resolution

The scale resolution of the hyperbolic second-order wavelet was studied in detail in Refs. [9,14] and will not
be repeated here. This section gives an explicit formula for the scale resolution of the mth-order hyperbolic
wavelet or hyperbolic wavelet family. The scale resolution is defined as the distance between band-peak
frequencies of two adjacent wavelets

l ¼
ĉðaopÞ

ĉðaop þ odÞ
, (40)

where l is the scale resolution ratio, typically in the range of 0plp1. Substituting Eq. (34) into Eq. (32), the
scale resolution of the hyperbolic wavelet order m is explicitly given as

l ¼
ð2bmÞm

cosh ðmÞ

cosh
2mbþ pod

2b

� �
ð2mbþ podÞ

m . (41)

It is advantageous for the hyperbolic wavelet family to possess explicit formulas for its band-peak
frequency, minimum number of scales and scale resolution, which allow easier theoretical and simulation
investigations, and clearly review properties of different family members when the order m varies. Some
approximations can be obtained.
�
 For m approaching infinity

The wavelet scale resolution cannot be estimated from Eq. (41). In fact, the ratio l must be set to unity so
that the equation remains correct. Thus, it is not practical to increase s to infinity which agrees with what
was discussed in Ref. [5].

�
 For other non-zero values of m

The scale resolution can be graphically obtained by using a graphical method in 3-D which means that,
from Eq. (41), the intersection(s) of two planes: l and

ð2bmÞm

cosh ðmÞ

cosh
2mbþ pod

2b

� �
ð2mbþ pod Þ

m ,

are the approximate values of the wavelet scale resolution(s). To obtain a finite solution to the hyperbolic
fourth-order scale resolution, l must be set to unity and this condition is applied to all members of the
hyperbolic wavelet family. It should also be noted that the smaller b is, the higher is the wavelet order m,
which is shown in Section 6.
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formula [9,14]:

A total number of wavelet scales jmax, as a function of od, can also be estimated by using the following

jmax ¼
lnðamaxÞ

ln
opð1Þ

opð1Þ � od

� �þ 1, (42)

where op(1) is the wavelet non-dimensional band-peak frequency at a ¼ 1.
From Eq. (42), the total number of scales can be explicitly obtained once amax is given. The non-dimensional

band-peak frequency op(1) can also be explicitly obtained by multiplying the factor pN(Dt0/T) to the
dimensional band-peak frequencies given by Eq. (34) of the hyperbolic wavelet, and by Eqs. (51) and (52) of
the CW wavelet. The fourth-order hyperbolic and CW wavelet total numbers of scales are numerically
estimated in Section 6.
5. CW high-order wavelets

In this section, the CW fourth-order wavelet will be studied in detail in which its parameters are explicitly
given in Section 5.1 along with some useful approximations for extreme values of s, and numerically estimated
in Section 6. The CW sixth-, eighth- and tenth-order wavelet parameters cannot be obtained because of the
involvement of extensive mathematical manipulations which is beyond the scope of this paper. However, their
Fourier transforms are briefly given by

ĉCW4ðoÞ ¼

ffiffiffiffiffiffi
ps
p

exp
�so2

4

� �
s2

s2o2 þ 12so� 2sþ 12
� 	

, (43)

ĉCW6ðoÞ ¼

ffiffiffiffiffiffi
ps
p

exp
�so2

4

� �
s3

s3o3 þ 30s2o2 � 6soðs� 30Þ � 60sþ 120
� 	

, (44)

ĉCW8ðoÞ ¼

ffiffiffiffiffiffi
ps
p

exp
�so2

4

� �
s4

s4o4 þ 56s3o3 � 12s2o2ðs� 70Þ

�336soðs� 10Þ þ 12s2 � 1680sþ 1680

 !
, (45)

ĉCW10ðoÞ ¼

ffiffiffiffiffiffi
ps
p

exp
�so2

4

� �
s5

s5o5 þ 90s4o4 � 20s3o3ðs� 126Þ � 360s2o2ð3s� 70Þ

þ60soðs2 � 252sþ 1260Þ þ 1080s2 � 50; 400sþ 30; 240

 !
. (46)

The relation o ¼ pN(Dt0)f0/T is used to convert a non-dimensional frequency o to the dimensional
frequency f0, yielding the dimensional expressions of CW wavelets as

ĉCW4ðf
0
Þ ¼

ffiffiffiffiffiffiffiffi
aps
p

exp
�s
4

a
pNCW4ðDt0Þf 0

TCW4

� �2
" #

s2
exp �j

NCW4pðDt0Þf 0b0

TCW4

� �

� s2 a
pNCW4ðDt0Þf 0

TCW4

� �2

þ 12s a
pNCW4ðDt0Þf 0

TCW4

� �2

� 2sþ 12

" #
, ð47Þ
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ĉCW6ðf
0
Þ ¼

ffiffiffiffiffiffiffiffi
aps
p

exp
�s
4

a
pNCW6ðDt0Þf 0

TCW6

� �2
 !

s3
exp �j

NCW6pðDt0Þf 0b0

TCW6

� �
s3 a

pNCW6ðDt0Þf 0

TCW6

� �3
 

þ30s2 a
pNCW6ðDt0Þf 0

TCW6

� �2

� 6sðs� 30Þ a
pNCW6ðDt0Þf 0

TCW6

� �
� 60sþ 120

!
, ð48Þ

ĉCW8ðoÞ ¼

ffiffiffiffiffiffi
ps
p

exp �0:25s
pNCW8ðDt0Þf 0

TCW8

� �2
 !

s4

�

s4 a
pNCW8ðDt0Þf 0

TCW8

� �4

þ 56s3 a
pNCW8ðDt0Þf 0

TCW8

� �3

� 12s2 a
pNCW8ðDt0Þf 0

TCW8

� �2

ðs� 70Þ

�336sðs� 10Þ a
pNCW8ðDt0Þf 0

TCW8

� �
þ 12s2 � 1680sþ 1680

2
66664

3
77775, ð49Þ

ĉCW10ðoÞ ¼

ffiffiffiffiffiffi
ps
p

exp �0:25s
pNCW10ðDt0Þf 0

TCW10

� �2
 !

s5

s5 a
pNCW10ðDt0Þf 0

TCW10

� �5

þ 90s4 a
pNCW10ðDt0Þf 0

TCW10

� �4

�20s3 a
pNCW10ðDt0Þf 0

TCW10

� �3

ðs� 126Þ � 360s2o2ð3s� 70Þ

þ60sðs2 � 252sþ 1260Þ a
pNCW10ðDt0Þf 0

TCW10

� �
þ 1080s2 � 50; 400sþ 30; 240

2
66666666664

3
77777777775
. ð50Þ
5.1. CW fourth-order wavelet

The hyperbolic and CW fourth-order wavelets were graphically presented in Section 3 in the time-domain.
Their frequency domain representations are also given in Fig. 7 in which the CW fourth-order wavelet exhibits a
‘‘negative’’ frequency power spectrum for ‘‘negative’’ frequencies while the CW second-order wavelet possesses a
positive frequency spectrum for the whole frequency range which can be suggested that high-order hyperbolic
wavelets might be useful for optical pattern recognition using a joint transform correlator [18]. The hyperbolic
second- and fourth-order wavelets possess positive spectra whose peak positions might also affect the optical
correlator performance. However, this paper is devoted to studies of high-order hyperbolic and CW wavelets and
therefore performance of optical joint transform correlators will be addressed in a separate publication. The CW
fourth-order wavelet parameters are explicitly given in this section, and also numerically estimated in Section 6 for
b ¼ 1/s ¼ 0.5. It should be noted that there might exist different numerical values for a wavelet parameter in
which the largest is chosen. However, for a wavelet, its time-based interval T is unique.
5.1.1. Band-peak frequency

Similar to Section 4.1, after some mathematical manipulations, the dimensional wavelet band-peak
frequencies are given by

f 0p1 ¼
D0TCW4

apNCW4ðDt0Þ
, (51)
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Fig. 7. Normalised frequency-domain representations of the hyperbolic and CW fourth-order wavelets for b ¼ s ¼ 1.
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where

D0 ¼
1

s
ð2c� 40Þ1=3 � 4þ

2ðsþ 6Þ

ð2c� 40Þ1=3

 !
,

f 0p2;3 ¼
TCW4

apNCW4ðDt0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ð Þ

2
�

3

4
ðD2Þ

2

r
, (52)

where

jcj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs3 þ 18s2 þ 108sþ 16Þ

p
,

D1 ¼
1

s
ð2c� 40Þ1=3

2
þ

sþ 6

ð2c� 40Þ1=3
þ 4

 !
; and D2 ¼

1

s
ð2c� 40Þ1=3 �

2ðsþ 6Þ

ð2c� 40Þ1=3

 !
.

5.1.2. Aliasing

Three different minimum numbers of samplings points can be obtained from three different band-peak
frequencies given by Eqs. (51) and (52). The first minimum number of sampling points, obtained by using f 0p1,
can be found by applying the graphical method to the following expression:

a ¼
ðD2 þ 12D� 2sþ 12Þ exp �D2

�
4

� 	
NCW4_1ps
2TCW4

� �2

þ
6NCW4_1ps

TCW4
� 2sþ 12

" #
exp �

N2
CW4_1p

2s

16ðTCW4Þ
2

 ! , (53)
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where

D ¼
1

s
ð2c� 40Þ1=3

2
�

sþ 6

ð2c� 40Þ1=3
þ 4

 !
.

The identical second and third numbers of sampling points, found by using f 0p2 and f 0p3, are given by

a ¼

NCW4_2ps
2TCW4

� �2

þ
6NCW4_2ps

TCW4
� 2sþ 12

" #
exp �

ðNCW4_2pÞ
2s

16T2
CW4

 !

s2 D2
1 þ

3D2
2

4

� �
þ 12s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ
3D2

2

4

r
� 2sþ 12

" #
exp �

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

1 þ 3D2
2

q
8

0
@

1
A

. (54)

The following approximations are obtained for s approaching zero and infinity.
�
 For s approaching zero

We obtain, |D0_small| ¼ |D1_small| ¼ |D2_small| ¼ |Dsmall|-N, and csmall � 4
ffiffiffi
2
p

. Moreover, with a known
wavelet order, the time-based interval TCW4 can be graphically estimated. The wavelet band-peak
frequencies therefore become

f 0p1_small �
2:17TCW4

apNCW4ðDt0Þ
, (55)

f 0p2_small �
16TCW4

apNCW4ðDt0Þ
; and f 0p3_small �

4:22TCW4

apNCW4ðDt0Þ
. (56)

The aliasing ratios, given by Eqs. (53) and (54), become

exp �
N2

CW4_1p
2s

16T2
CW4

 !
�

0:1106544012� 10�7

a1_small
, (57)

a2;3_small � exp �
ðNCW4_2pÞ

2s
16T2

CW4

 !
, (58)

in which the wavelet minimum numbers of sampling points can be numerically estimated by using its
approximate time-based interval TCW4. From Eq. (58), it should also be noted that, when s becomes
infinitely small, its right-hand side becomes unity which also forces the left-hand side, a, to unity, yielding
no solutions to NCW4_2. Thus, Eq. (57) should be mainly used to numerically estimate the minimum number
of sampling points under this condition.

�
 For s approaching infinity

We obtain, clarge � s
ffiffiffiffiffiffi
2s
p
!1, and D0_large ¼ D1_large ¼ D2_large ¼ Dlarge-0, yielding near DC band-peak

frequencies [Eqs. (51) and (52)] and infinite minimum numbers of sampling point [from Eqs. (53) and (54)],
which are not practically useful. Thus, for practical purposes, this condition should not be employed as also
discussed in Ref. [5].

5.1.3. Scale limit

For a chosen value of Z, the wavelet scale limit amax can be numerically estimated (Section 6) by using Eqs. (38)
and (39) once the minimum number of sampling points is estimated by using Eqs. (53) and (54), respectively.
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5.1.4. Scale resolution

The non-dimensional band-peak frequency, which must be used to estimate the wavelet scale resolution, is found
by multiplying the factor pN(Dt0)/T to the wavelet band-peak frequencies given by Eqs. (51) and (52), yielding

op1 ¼
D0

a
, (59)

and

op2;3 ¼
1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 �
3

4
D2

2

r
¼

E

a
, (60)

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 �
3
4
D2

2

q
.

By using Eqs. (59) and (60), the wavelet scale resolutions, obtained by using its three different band-peak
frequencies, are roots of the following Eqs. (61)�(63), respectively,

l ¼
2 cC1=3 þ 4C1=3 þ sC1=3 þ 2C2=3 þ 4c� 8þ 2s2 þ 24sþ 4sC1=3
� �
Aþ 4s2od1C

1=3 þ 4sod1c� 80sod1 þ s2o2
d1C2=3 þ 2C1=3cþ 8c

� exp
od1ð4sþ sod1C1=3 � 8C1=3 þ 24þ 2C1=3Þ

4C1=3

 !
, ð61Þ

l ¼
ðs2E2

1 þ 12sE1 � 2sþ 12Þ exp
ðod2 þ 2E1Þsod2

4

� �
s2o2

d2 þ 2sod2ðE1sþ 6Þ þ E2
1 þ 12sE1 � 2sþ 12

, (62)

where E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 �
3
4
D2

2

q
,

l ¼
ðs2E2

2 þ 12sE2 � 2sþ 12Þ exp
ðod3 þ 2E2Þsod3

4

� �
s2o2

d3 þ 2sod3ðE2sþ 6Þ þ E2
2 þ 12sE2 � 2sþ 12

, (63)

where

E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 �
3
4D

2
2

q
; C ¼ 2c� 40,

and

A ¼ 4sodC1=3ð6þ C1=3Þ � 16þ 4C2=3 þ 2sC2=3 þ 8C1=3 þ 8sC1=3 þ 48sþ 4s2.

Similar approximations are obtained to numerically estimate the scale resolutions.
�
 For s approaching zero

We obtain, jcsmallj � 4
ffiffiffi
2
p

, |D0_small| ¼ |D1_small| ¼ |D2_small| ¼ |Dsmall| ¼ E1_small ¼ E2_small-N,
CsmallE�28.7, |C1/3|E3.06, |C2/3|E9.37 and |Asmall|E�16+4C1/3+8C1/3E46. By using these values,
Eq. (61) becomes

l � 0:9997 expð18:26od1_smallÞ, (64)

which yields a fine scale resolution of od1_smallE2� 10�5. Under this condition, Eqs. (62) and (63) do not
yield solutions to the wavelet scale resolutions.

�
 For s approaching infinity

We obtain

clarge � s
ffiffiffiffiffiffi
2s
p

; D0_large ¼ D1_large ¼ D2_large ¼ Dlarge ¼ E1 ¼ E2! 0,

yielding

Clarge � 2c; ðClargeÞ
2=3
	1:26s; ðClargeÞ

1=3
� 1:12s1=2,
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and AlargeE4s2. Thus, Eq. (61) becomes

l �
10:52 expð5:82s1=2 þ 0:9od1_largesÞ

5:66s1=2 þ 1:26so2
d1_large

: (65)

From Eq. (65), the scale resolution can be numerically estimated by locating the intersection(s) of two
functions: y1 ¼ ð5:66s

1=2 þ 1:26so2
d1_largeÞl and y2 ¼ 10.52 exp(5.82s1/2+0.9od1_larges). It should be noted

that as s increases, solutions to od1_large are more difficult to obtain because y2 approaches infinity for
sX10. Eqs. (62) and (63) also do not yield solutions to the scale resolutions.

�
 For other values of s

The wavelet’s first scale resolution can be found by using Eq. (61) and is plotted against s and l in Fig. 8 for
2� 10�3psp10, and in Fig. 10 for 10psp50. For s450, the scale resolution becomes very coarse and
approaches unity for large values of s. The second and third scale resolutions are numerically estimated by
using Eqs. (62) and (63), yielding

l �
exp

ðod2 þ 11:6Þod2

2

� �
4o2

d2 þ 70:53od2 þ 181:43
; (66)

which does not yield a solution to od2, and

l �
exp

ðod3 þ 7:5Þod3

2

� �
4o2

d3 þ 54od3 þ 112:206
, (67)

which does not yield a solution to od3.
Fig. 8. CW fourth-order wavelet scale resolution (‘‘d’’ axis) for 2� 10�3psp10 and 0plp1 (vertical axis).

Fig. 9. Contour plot of Fig. 8, l is vertical axis. The scale resolution can be read across to ‘‘d’’ axis on graph.
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Fig. 10. CW fourth-order wavelet scale resolution for 10psp50 and 0plp1.

Fig. 11. Contour plot of Fig. 10. The scale resolution can be read across to the ‘‘d’’ axis on graph.

Table 3

Approximate parameter values of the CW fourth-order wavelet

Parameter s approaching zero s approaching infinity Other values

Band-peak frequency, fp Eqs. (55) and (56) Zero (DC) Given in Section 6

Minimum number of sampling points, NCW4 Eqs. (53) and (54) Depending on TCW4

Scale limit, amax Depending on NCW4

Scale resolution, od 2� 10�5 — 0.32 at sE3, and 0.15 at sE10
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For the CW fourth-order wavelet, as can be seen in Figs. 9 and 10, its coarsest scale resolution of
approximately 0.32 is obtained at sE3. For 10psp50, the scale resolution becomes finer with the coarsest of
about 0.15 (Fig. 11) at sE10. Thus, it is clear that as s increases (b decreases), the scale resolutions of the CW
high-order wavelets decrease, and become finer. This is consistent with what was reported in Refs. [5,9,19] in
which increasing s (decreasing b for the hyperbolic kernel) reduces the CW kernel’s effectiveness in
suppressing cross terms and noise robustness, but improves its auto-term support and wavelet scale
resolutions.

Table 3 summarises numerical values of the CW fourth-order wavelet for s approaching zero and infinity.
6. Numerical example

In this section, minimum numbers of sampling points, band-peak frequencies, scale limits, scale resolutions,
and maximum numbers of scales of the fourth-order CW and hyperbolic wavelets are numerically estimated,
given the sampling time interval (Dt0) ¼ 0.2ms, aliasing ratio a ¼ 0.01 (1%), b ¼ 0.5, s ¼ 2, and time-based
interval T which can be graphically estimated for each wavelet. Comparisons among Morlet, second- and
fourth-order hyperbolic and CW wavelets are also given. From Fig. 3, the hyperbolic and CW fourth-order
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wavelet time-based intervals are graphically estimated as THyp_4ETCW4E3. From Eq. (36), the minimum
numbers of sampling points for the fourth-order hyperbolic wavelet (m ¼ 4) are the roots of the following
equation:

0:01 ¼
NHyp_4 � p2

4� THyp_4 � b� 4

� �4
cosh ð4Þ

cosh
NHyp_4 � p2

4� THyp_4 � b

� � , (68)

approximately yielding two solutions to NHyp_4 of 1 and 4, of which NHyp_4E4 is chosen. From Eq. (34), the
hyperbolic fourth-order wavelet band-peak frequency is given by

f 0Hyp_4 ¼
2� 0:5� 4� 3

ap2 � 4� ð0:2� 10�3Þ
�

1521:36

a
. (69)

For the CW fourth-order wavelet, the minimum numbers of sampling points can be obtained by using
Eqs. (53) and (54). For s ¼ 2, we obtain, DE0.68, D0E2.79, D1E4.4 and D2E�2.64, hence, Eq. (53) becomes

0:01 ¼
14:8

ð1:1N2
CW4_1 þ 12:56NCW4_1 þ 8Þ expð�0:137N2

CW4_1Þ
, (70)

which does not yield a solution to NCW4_1. From Eq. (54), the second and third minimum numbers of sampling
points are roots of Eq. (71)

0:01 ¼ 0:053ð1:1N2
CW4_2 þ 12:56NCW4_2 þ 8Þ expð�0:137N2

CW4_2Þ, (71)

which yields an approximate solution of NCW4_2 � 7. From Eqs. (51) and (52), the CW fourth-order wavelet
band-peak frequencies are therefore given as

f 0CWp1 ¼
2:79� 3

a� 3:14� 7� 0:2� 10�3
�

1904

a
, (72)

f 0CWp2 �
3

a� 3:14� 7� 0:2� 10�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:4ð Þ2 �

3

4
ð2:64Þ2

r
�

3384

a
; and f 0CWp3 �

2565:5

a
, (73)

of which f 0CWp1 � 1904=a and f 0CWp2 � 3384=a are chosen as its minimum and maximum band-peak frequencies,
respectively.

To numerically estimate a wavelet maximum scale number amax, it should be noted that band-peak
frequencies can also be scaled down to approximately 30Hz, which can be increased or decreased depending
upon a particular application [14]. From Eq. (69), the hyperbolic wavelet maximum scale number is
numerically given as

aHyp4
max ¼

1521:36

30
� 51. (74)

From Eqs. (72) and (73), the maximum scale numbers of the CW fourth-order wavelet are numerically
given as

aCW4
max 1 ¼

1904

30
� 63:5; and aCW4

max 3 ¼
2565:5

30
� 85:5. (75)

By using Eqs. (38) and (39), respectively, for the hyperbolic and CW fourth-order wavelets and assuming
that Z ¼ 1

3
[Eq. (38)], their minimum numbers of input data points M can be numerically estimated. For the

hyperbolic fourth-order wavelet, by using aHyp4
max � 51 from Eq. (74) and NHyp4E4 from Eq. (68), its minimum

number of data points MHyp4 is approximately given as

MHyp4 ¼ 2k ¼
51� ð4� 1Þ

1=3
X459, (76)
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which should be chosen as MHyp4 ¼ 512, yielding kHyp4 ¼ 9 for a fast calculation. It should also be noted that
since NHyp4E4 is small which might not be sufficient to sample the wavelet, a higher value might be chosen to
improve its sampling which might yield MHyp4 ¼ 1024 and kHyp4 ¼ 10.

For the CW fourth-order wavelet, by using aCW4
max 1 � 63:5 and aCW4

max 3 � 85:5 from Eq. (75), and NCW4_2E7
from Eq. (71), its minimum numbers of input data points, MCW4_1 and MCW4_2, are approximately given as

MCW4_1 ¼ 2k ¼
63:5� ð7� 1Þ

1=3
X1143; and MCW4_2 ¼

85:5� ð7� 1Þ

1=3
X1549, (77)

which should be chosen as MCW4 ¼MCW4_1 ¼MCW4_2 ¼ 2048, yielding kCW ¼ 11 for a fast calculation.
Thus, in this case, either aCW4

max 1 or aCW4
max 3 can be employed to estimate MCW4.

A wavelet scale resolution can be estimated independently of its band-peak frequencies, maximum number
of scales, minimum number of sampling points N and input data points M. For the CW fourth-order wavelet,
its scale resolutions were numerically estimated in Section 6. For the hyperbolic fourth-order wavelet, by using
Eq. (41), and b ¼ 0.5, its scale resolution is the approximate root of the following equation:

l �
0:0964 cosh ð4þ 3:14oHy4

d Þ

ð1:274þ oHy4
d Þ

4
, (78)

which yields only one solution of od
Hy4E10�4 for l ¼ 1.

To calculate the total number of scales jmax, the non-dimensional band-peak frequency at a ¼ 1 (for the
mother wavelet) must be obtained. For the hyperbolic fourth-order wavelet, by using Eq. (34) with b ¼ 0.5, we
obtain

oHyp4
p ¼

2� 0:5� 4

p
� 1:274, (79)

yielding the wavelet approximate total number of scales jmax of 51� 103. It should be noted that the finer the
wavelet scale resolution, the larger its total number of scales jmax which establishes a trade-off between them.
Thus, depending on the nature of a particular application, a finer scale resolution or a larger total number of
scales is chosen. By using Eqs. (51) and (52) with s ¼ 2, for the CW fourth-order wavelet, its dimensionless
band-peak frequencies are given as

oCW4
p1 � 2:8, (80)

oCW4
p2 � 6:45; and oCW4

p3 � 6:26. (81)

Table 4 summarises numerical parameters of the hyperbolic and CW fourth-order [9] wavelets. For
comparison purposes, numerical parameters of the Morlet wavelet with oc ¼ 5.0 rad/s, hyperbolic and CW
second-order wavelets are also given.
Fig. 12. Hyperbolic wavelet scale resolution (‘‘d’’ on graph) for 6pmp8.
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Fig. 13. Hyperbolic wavelet scale resolution for 30pmp103.

Fig. 14. Hyperbolic wavelet scale resolution for 103pmp5� 104.

Fig. 15. Hyperbolic scale resolution for 3� 104pmp3� 105.
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As m increases to 6, the hyperbolic wavelet scale resolution becomes finer and approximately approaches
3� 10�5 as can be seen in Fig. 12. For 8pmo30, it is undefined. For 103XmX30, it is graphically displayed in
Fig. 13 in which empty regions correspond to prohibited ranges of m. For 103pmp5� 104, the scale
resolution is graphically plotted in Fig. 14.

As can be seen in Figs. 12–14, for the hyperbolic wavelet family, increasing the wavelet order m does not
always yield a finer scale resolution. In fact, for certain values of m, its wavelet scale resolution is undefined or
infinite. For 104pmp3� 104, from Fig. 14, its wavelet scale resolution is undefined. For 3� 104pmp3� 105,
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Fig. 16. Hyperbolic scale resolution for 3� 105pmp3� 106.

Table 4

Approximate parameter values of the Morlet wavelet [9] with oc ¼ 5.0 rad/s, and second- and fourth-order CW wavelets with s ¼ 2 and

l ¼ 0.9

Wavelet T N amax M od jmax

Morlet 3 17 49 4096 0.459 42

Second-order CW 5 13 29 2048 0.3246 14

Second-order hyperbolic 10 9 38 1024 0.2066 11

Fourth-order CW 3 7 85.5 2048 0.15 190a

Fourth-order hyperbolic 3 4 or 7 51 512 or 1024 10�4 51� 103

For the hyperbolic wavelets, b ¼ 0.5 and l ¼ 1.
aThe largest total number of scales among 82, 190 and 185 estimated by using Eqs. (80) and (81).

K.N. Le / Journal of Sound and Vibration 304 (2007) 297–325 319
it becomes finer as less broken stripes are present as can be seen in Fig. 15. For mX3� 105, it becomes finer of
approximately O(10�6), compared to Fig. 15, as can be seen in Fig. 16, which is a significant improvement over
hyperbolic wavelets with lower orders of mp3� 104, even though these do possess fine scale resolutions. It
should also be noted that there are still empty regions in Fig. 16 which might suggest that these hyperbolic
wavelet family members still possess undefined scale resolutions which can be avoided by not choosing the
order m in its prohibited ranges, listed as: 300pmp500, 800pmp103, and 104pmp3� 104.

One disadvantage of the hyperbolic wavelet is that to obtain a very fine scale resolution, a very large wavelet
order m must be used. However, the fourth-order hyperbolic wavelet possesses a fine scale resolution of
approximately 10�4 and a total number of scales of 51� 103 (Table 4). For applications of which a finer scale
resolution is required, the fourth- and higher-order hyperbolic wavelets can be employed at the expense of
having a larger order m and total number of scales. It is also important to stress that the hyperbolic wavelet
family scale resolution decreasing rate of O(104) is slower than its order m of O(105), and more importantly,
yielding a slower increasing rate of O(104) for its total number of scales jmax, which should be small to reduce
computational burden. From Table 4, the fourth-order hyperbolic wavelet, even though possesses a larger
total number of scales compared to those of the CW wavelets, has a much finer scale resolution which is its
prime advantage. Moreover, the second-order hyperbolic wavelet also has a finer scale resolution than that of
the CW second-order wavelet as shown in Ref. [9].

7. Experiments

The Duffing oscillator is used in this section as a typical example to show the effectiveness of high-order
hyperbolic and Mexican-hat wavelets. The sym3 wavelet is used as a benchmark for comparison purposes. The
Period 2 (as shown in Figs. 17–21) and chaotic states (as shown in Figs. 22–26) of Duffing oscillator are
studied using high-order hyperbolic and Mexican-hat wavelet transforms and wavelet power spectra to
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Fig. 17. Magnified time-domain waveform of Duffing Period 2 and a contour plot of its WPS using the sym3 wavelet.

Fig. 18. Time-domain waveform of Duffing Period 2 and contour plot of its hyperbolic WPS using the fourth-order wavelet.
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effectively show energy distributions of the input waveform. The wavelet transform (WT) is given in Eq. (2),
from that the wavelet power spectrum (WPS) is mathematically given by [13]

WPSðt;oÞ ¼WTðt;oÞWT�ðt;oÞ ¼ WTðt;oÞ
�� ��2. (82)

The WT and WPS are used to study signal behaviour because of their ability to effectively show the signals’
energy distribution [13], especially for chaotic detection. From Figs. 17–21, it is clear that high-order
hyperbolic and Mexican-hat wavelets show consistent results in which the periodicity of the waveform is
successfully revealed with the presence of repetitive energy-concentrated contours. It should also be noted that
the hyperbolic wavelets yield a larger number of scales (about 250 compared with 90) and a finer resolution
than high-order CW wavelets as expected, except the fourth-order hyperbolic wavelet which shows limited
information about the input signal. From Fig. 19 subplots (b) and (c), it is clear that the tenth-order
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Fig. 19. Contour plots of the hyperbolic WPS of Duffing Period 2 waveform using the sixth- and eighth- and tenth-order wavelets as

shown in subplots (a), (b) and (c), respectively.

Fig. 20. The CW WPS using the fourth- and sixth-order CW wavelets.
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hyperbolic and CW WPS yield a larger total number of scales and an improved scale resolution than the
eighth-order WPS, which validates the conclusion made in Section 3. It is also evident that the tenth-order
hyperbolic wavelet yields a slight improvement compared with the CW wavelet with a finer scale resolution.

From Figs. 22–26, the hyperbolic and CW high-order wavelets successfully reveal a broad energy
distribution of the Duffing chaotic waveform, except the fourth-order hyperbolic wavelet. However, it should
be noted that this particular wavelet can still be used to study Duffing oscillator because of its distinct
differences between Period 2 and chaotic states as clearly shown in Figs. 18–23. For chaotic detection, the CW
wavelets reveal a short ‘‘periodic period’’ in Duffing oscillator which can result in misleading information
about the waveform, whereas, the hyperbolic high-order wavelets clearly shows a broad energy distribution
with random harmonic peaks which is typical in chaotic waveforms. This suggests that high-order hyperbolic
wavelets are more suitable for chaotic detection than CW high-order wavelets.
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Fig. 21. The CW WPS using the eighth- and tenth-order CW wavelets.

Fig. 22. Time-domain of Duffing chaotic waveform and a contour plot of its WPS using the sym3 wavelet.
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8. Conclusions and further work

The meaning of kernel even-order derivative and positive concavity concepts has been discussed in which
only even functions were shown to be admissible wavelets. Positive concavity has been employed so that
wavelets have positive peaks at the origin and also satisfy kernel admissibility constraints which validate them
as admissible kernels for Cohen’s time–frequency power spectra. Moreover, for wavelets to be admissible
kernels, their parameters b and s must be numerically set to specific values so that their peaks are unity under
DC conditions. For example, the Mexican-hat and hyperbolic second-order wavelets can be considered as
admissible kernels only for s ¼ 2 and b ¼ 1, respectively. As a result, it was shown that there exist an infinite
number of admissible symmetrical high-order wavelets, yielding an infinite number of kernels for Cohen’s
time–frequency power spectra.

The negative second-, fourth-, negative sixth-, eighth- and negative tenth-order derivatives of the CW kernel
and mth-order derivatives (where m is the even wavelet order) of the first-order hyperbolic kernel have been



ARTICLE IN PRESS

Fig. 23. Contour plots of the hyperbolic WPS of Duffing chaotic waveform using the fourth- and sixth-order wavelets.

Fig. 24. Contour plots of the hyperbolic WPS of Duffing chaotic waveform using the eighth- and tenth-order wavelets.

K.N. Le / Journal of Sound and Vibration 304 (2007) 297–325 323
explicitly expressed and shown to be admissible wavelets. This allows time–frequency signal processing and
wavelet analyses to be correctly linked together which means that new kernels can be found from new wavelets
and vice versa, provided that these kernels and wavelets satisfy their admissibility constraints. In the
time domain, the hyperbolic and CW wavelet normalisation constants of orders 2–10 have been explicitly
expressed and numerically estimated for b ¼ s ¼ 1. In the frequency domain, the mth-order hyperbolic and
fourth-order CW wavelet parameters, including band-peak frequencies, minimum numbers of sampling
points, scale limits, scale resolutions and maximum numbers of scales, have been explicitly obtained and
numerically estimated for b ¼ 0.5 and s ¼ 2. It was also shown that the higher the wavelet order, the finer its
scale resolution, and the larger its total number of scales. Prohibited ranges of the hyperbolic wavelet order m,
yielding undefined scale resolutions, have also been identified. Periodic and chaotic detection in the Duffing
oscillator has been successfully carried out using high-order hyperbolic and CW wavelets which shows their
effectiveness in studying signal behaviour. This is also useful for crack detection in rotors. It has been shown
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Fig. 25. Contour plots of the CW WPS of Duffing chaotic waveform using the fourth- and sixth-order wavelets.

Fig. 26. Contour plots of the CW WPS of Duffing chaotic waveform using the eighth- and tenth-order wavelets.
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that the tenth-order hyperbolic and CW wavelets are more effective than the eighth-order wavelets a larger
number of scales and a finer scale resolution. More work on using the WT and WPS in crack detection is also
in progress.

The CW sixth- to tenth-order wavelets have only been briefly discussed because extensive mathematical
manipulations are required to obtain their explicit frequency parameters, which is beyond the scope of this
paper. Further work on CW high-order wavelets is worth investigating and will be presented in a future
publication. Throughout this paper, it has been shown that high-order hyperbolic and CW wavelets possess
finer scale resolutions and are more effective than the second-order hyperbolic and CW wavelets. Higher-order
wavelets can also find new applications with further improvements in image processing such as coherent
structure detection in turbulence and biomedical signal such as the ECG [12,13], edge detection, image coding
[10] and noise reduction [20,21], astrophysics [22–25], plasma physics [26–28], filter banks and wavelet
transform calculation efficiency. Some works toward these areas are currently under progress.
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